Abstract

AbstractLA–ICP–MS in situ U–Pb monazite geochronology and P–T pseudosections are combined to evaluate the timing and physical conditions of metamorphism in the SE Anmatjira Range in the Aileron Province, central Australia. All samples show age peaks at c. 1580–1555 Ma, with three of five samples showing additional discrete age peaks between c. 1700 and 1630 Ma. P–T phase diagrams calculated for garnet–sillimanite–cordierite–K‐feldspar–ilmenite–melt bearing metapelitic rocks have overlapping peak mineral assemblage stability fields at ~870–920 °C and ~6.5–7.2 kbar. P–T modelling of a fine‐grained spinel–cordierite–garnet–biotite reaction microstructure suggests retrograde P–T conditions evolved down pressure and temperature to ~3–5.5 kbar and ~610–850 °C. The combined geochronological and P–T results indicate the SE Anmatjira Range underwent high‐temperature, low‐pressure metamorphism at c. 1580–1555 Ma, and followed an apparently clockwise retrograde path. The high apparent thermal gradient necessary to produce the estimated P–T conditions does not appear to reflect decompression of high‐P assemblages, nor is there syn‐metamorphic magmatism or structural evidence for extension. Similar to previous workers, we suggest the high‐thermal gradient P–T conditions could have been achieved by heating, largely driven by high heat production from older granites in the region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.