Abstract

Upgrading excess CO2 toward the electrosynthesis of formic acid is of significant research and commercial interest. However, simultaneously achieving high selectivity and industrially relevant current densities of CO2-to-formate conversion remains a grand challenge for practical implementations. Here, an electrically conductive zeolite support is strategically designed by implanting Sn ions into the skeleton structure of a zeolite Y, which impregnates ultrasmall In0.2Sn0.8 alloy nanoclusters into the supercages of the tailored 12-ring framework. The prominent electronic and geometric interactions between In0.2Sn0.8 nanoalloy and zeolite support lead to the delocalization of electron density that enhances orbital hybridizations between In active site and *OCHO intermediate. Thus, the energy barrier for the rate-limiting *OCHO formation step is reduced, facilitating the electrocatalytic hydrogenation of CO2 to formic acid. Accordingly, the developed zeolite electrocatalyst achieves an industrial-level partial current density of 322mA cm-2 and remarkable Faradaic efficiency of 98.2% for formate production and stably maintains Faradaic efficiency above 93% at an industrially relevant current density for over 102 h. This work opens up new opportunities of conductive zeolite-based electrocatalysts for industrial-level formic acid electrosynthesis from CO2 electrolysis and toward practically accessible electrocatalysis and energy conversion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.