Abstract

The rapid development of flexible electronic technology has led to the in-depth study of flexible wearable sensors to achieve accurate sensing under different external stimuli. However, it is still a huge challenge to develop hydrogel-based wearable skin-like sensors with super ductility, high sensitivity, and self-healing properties. Herein, the Ti3C2 type of MXene was synthesized, and the Ag/MXene nanocomplexes were incorporated into polyvinyl alcohol-borax matrix to construct a novel composite hydrogel as the multifunctional nanofillers, which could bring both improved properties and novel functionalities. The Ag/MXene-Poly (vinyl alcohol) (PVA) hydrogel displayed integrated merits of highly strain sensitive (GF = 3.26), self-healing (within 10 min, 91% healing efficiency), and excellent antibacterial activity. The hydrogel could be assembled into a wearable skin-like sensor to monitor human movement, including large deformations (finger, elbow, wrist, and knee bending) and tiny deformations (mouth's movement and throat vocalization) in real time. Therefore, this work shed a new light on the development of flexible wearable skin-like sensors for the personalized healthcare monitoring, human-machine interfaces, and artificial intelligence.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call