Abstract

Being able to dynamically shape light at the nanoscale is one of the ultimate goals in nano-optics1. Resonant light-matter interaction can be achieved using conventional plasmonics based on metal nanostructures, but their tunability is highly limited due to a fixed permittivity2. Materials with switchable states and methods for dynamic control of light-matter interaction at the nanoscale are therefore desired. Here we show that nanodisks of a conductive polymer can support localized surface plasmon resonances in the near-infrared and function as dynamic nano-optical antennas, with their resonance behaviour tunable by chemical redox reactions. These plasmons originate from the mobile polaronic charge carriers of a poly(3,4-ethylenedioxythiophene:sulfate) (PEDOT:Sulf) polymer network. We demonstrate complete and reversible switching of the optical response of the nanoantennas by chemical tuning of their redox state, which modulates the material permittivity between plasmonic and dielectric regimes via non-volatile changes in the mobile charge carrier density. Further research may study different conductive polymers and nanostructures and explore their use in various applications, such as dynamic meta-optics and reflective displays.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.