Abstract

Nanopipette-based sensors are one of the most effective tools for detecting nanoparticles, bioparticles, and biomolecules. Quantitative analysis of nanoparticles with different shapes and electrical charges is achieved through measurement of the blockage currents that occur when particles pass through the nanopore. However, typical nanopipette sensors fabricated using a conventional needle-pulling method have a typical pore-diameter limitation of around 100 nm. Herein, we report a novel conductive hydrogel-composited nanopipette sensor with a tunable inner-pore diameter. This is made by electrodepositing poly(3,4-ethylenedioxythiophene) polystyrene sulfonate onto the surface of a nanopipette with a prefabricated sacrificial copper layer. Because of the presence of copper ions, the conductive polymer can stably adhere to the tip of the nanopipette to form a nanopore; when nanoparticles pass through the conductive nanopore, more distinct blocking events are observed. The size of the nanopore can be changed simply by adjusting the electrodeposition time. In this way, suitable nanopores can be obtained for highly sensitive screening of a series of particles with diameters of the order of tens of nanometers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.