Abstract

Polyaniline-based conductive polymers are promising electrochemical sensor materials due to their unique physical and chemical properties, such as good gas absorption, low dielectric loss, and chemical and thermal stabilities. The sensing performance is highly dependent on the structure and dimensions of the polyaniline-based conductive polymers. Although in situ oxidative polymerization combined with the self-assembly process has become one of the main processes for the preparation of flexible polyaniline-based gas sensors, how to prepare polyaniline materials into uniformly arranged microwire arrays is still an urgent problem. In this paper, an in-depth study was conducted on the preparation of polyaniline microwire arrays by combining a wettability interface dewetting process and a liquid-film-induced capillary bridges method. The factors influencing the preparation of polyaniline microwire arrays, including solution concentration, template width, evaporation temperature, and evaporation time, were investigated in detail. The wire formation rates were recorded from the results of SEM images. 100% microwires formation rate can be obtained by using a 1.0 mg mL-1 concentration of polyaniline solution and a 10 μm silicon template at an evaporation temperature of 80 °C for 18 h. The prepared microwire arrays can realize sulfur dioxide sensing at room temperature with a response speed of about 20 s and can detect sulfur dioxide gas as low as 1 ppm. Thus, the liquid-film-induced capillary bridge method shows a new possibility to prepare gas sensor devices for insoluble polymers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call