Abstract

Magnéli-phase Ti4O7, known for its high electrical conductivity and corrosion resistance, is typically prepared by hydrogen reduction at high temperatures (∼1000 °C), leading to large particles. Nanosized Ti4O7 have been explored for application toward high specific surface area electrode materials and electrocatalyst supports; nonetheless, the particle size of Ti4O7 is still insufficient for utilization as a support. In this study, we have pursued a novel synthetic approach for nanosized Ti4O7 platelets with a length of 10-80 nm and thickness of 3-10 nm even under high-temperature conditions. We herein describe the use of SiO2 beads as a core to obtain a SiO2 core coated with multilayers of TiO2 nanosheets exfoliated from layered H2Ti4O7 which is subsequently subjected to high-temperature reduction to prepare a SiO2-core@Ti4O7-shell structure. The pair distribution function technique has proven that the shell is transformed to single-phase Ti4O7. The electrical double layer capacitance of SiO2-core@Ti4O7-shell was much larger than that of conventionally synthesized Ti4O7 particles with a micrometer size. The results show the beneficial effects of the SiO2-core@Ti4O7-shell structure, and it is the first example of the synthesis for conductive Ti4O7 with a high specific surface area even under conditions of high-temperature synthesis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.