Abstract

Anultrasensitive electrochemical biosensor was designedfor the rapid label-free detection of circulating tumor DNA (ctDNA, EGFR 19 Dels for non-small cell lung cancer, NSCLC). We linked the highly conjugated tricatecholate, 2,3,6,7,10,11-hexahydroxytriphenylene (HHTP) with Ni(II) ions into the two-dimensional porous conductive metal-organic frameworks (MOFs), which istermed Ni-catecholates (Ni-CAT). Then, the AuNPs/Ni-catecholates/carbon black/polarized pencil graphite electrode (AuNPs/Ni-CAT/CB/PPGE) was obtained by electrodeposition of AuNPs on the surface of PPGE modified with Ni-CAT/CB composite materials. The AuNPs/Ni-CAT/CB/PPGE were used for label-less detection of ctDNA, with a total detection time of only 30min. Under optimal detection conditions, the AuNPs/Ni-CAT/CB/PPGE sensor exhibited excellent detection performance with good linear response to ctDNA over a wide concentration range and the detection limit down to the femtomolar level. The sensor was applied to the determination of ctDNA in serum samples withhigh sensitivity. This simple, efficient, and expeditious method has practical value in liquid biopsy of ctDNA and has potential for development in early detection, treatment, and prognosis of tumors. Herein, an ultrasensitive electrochemical biosensor was designed for the rapid label-free detection of ctDNA (EGFR 19 Dels for non-small cell lung cancer, NSCLC). We linked the highly conjugated tricatecholate, 2,3,6,7,10,11-hexahydroxytriphenylene (HHTP) with Ni(II) ions into the two-dimensional porous conductive metal-organic frameworks (MOFs), which is termed as Ni-catecholates (Ni-CAT). Then, the AuNPs/Ni-catecholates/carbon black/polarized pencil graphite electrode (AuNPs/Ni-CAT/CB/PPGE) was obtained by electrodeposition of AuNPs on the surface of PPGE modified with Ni-CAT/CB composite materials. The AuNPs/Ni-CAT/CB/PPGEs were used for label-less detection of ctDNA, with a total detection time of only 30min. Under optimal detection conditions, the AuNPs/Ni-CAT/CB/PPGE sensor exhibited excellent detection performance with good linear response to ctDNA in the concentration range of 1 × 10-15M to 1 × 10-6M and with a detection limit as low as 0.32 fM. The sensor was applied for determination of ctDNA in serum samples and gave high sensitivity. This simple, efficient and expeditious method has practical value in liquid biopsy of ctDNA and has potential for development in early detection, treatment and prognosis of tumors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call