Abstract

In the active interest aroused by catalysis of electrochemical reactions, particularly molecule activation related to modern energy challenges, mesoporous films deposited on electrodes are often preferred to catalysts homogeneously dispersed in solution. Conduction in the solid portion of the film and in the pores may strongly affect the characteristic catalytic Tafel plots, possibly leading to mechanistic misinterpretation and also degrade the catalytic performances. These ohmic drop effects take place, unlike those classically encountered with a massive electrode immersed in an electrolytic solution, in two different zones of the film, the solid bulk of the film and the pores, that are coupled together by a distributed capacitance and by the faradaic impedance representing the catalytic reaction located at their interface. A transmission line modeling allows the analysis of the capacitance charging responses as a function of only two dimensionless parameters in the framework of linear scan voltammetry: ...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call