Abstract

AbstractThe aim of this work was to develop and characterise electrically conductive materials for proton exchange membrane fuel cells and bipolar plates (BPPs). These BPPs were made from highly conductive blends of polyethylene terephthalate (PET) and polyvinylidene fluoride (PVDF), as matrix phase. The conductive materials were developed from carefully formulated blends composed of conductive carbon black (CB) powder and, in some cases, graphite synthetic flakes mixed with pure PET, PVDF or with PVDF/PET systems. They were first developed by twin‐screw extrusion process then compression‐molded to give BPP final shape. As the developed blends have to meet properties suitable for BPP applications, they were characterised for their rheological properties, electrical through‐plane resistivity (the inverse of conductivity), oxygen permeability, flexural and impact properties. Results showed that lower resistivity was obtained with PVDF/CB blends due to the higher interfacial energy between the PVDF matrix and CB and also the higher density and crystallinity of PVDF, compared to those of PET. It was also observed that the lowest resistivity values were obtained with mixing PVDF and PET at controlled compositions to ensure PVDF/PET co‐continuous morphology. Also, slow cooling rates helped to attain the lowest values of through‐plane resistivity for all studied blends. This behaviour was related to the higher crystallinity obtained with low cooling rates leading to smaller amorphous regions in which carbon particles are much more concentrated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.