Abstract

In the present work conductive semistructural composites were produced by injection moulding, combining the mechanical properties of long (glass) fibre thermoplastics (LFTs) with the conductive properties of carbon nanofibres (CNFs). The moulded LFT/CNF parts exhibit percolation behaviour between 2 and 3 wt-%CNF loading, characterised by a sharp drop in electrical resistivity from 1012 to 102 Ω cm, accompanied by a step increase in the shear viscosity at low shear rates. At the same time, the main LFT properties are maintained: the modulus increased slightly, strength and viscosity, and thus processability, remained unaffected, while the impact resistance decreased. In addition, a significant improvement in surface quality was observed, largely eliminating the glass fibre printthrough, typically found in LFTs. The results thus show the successful use of small amounts of CNFs in making LFTs conductive, which becomes suitable for, e.g. electrostatic painting at limited additional cost.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.