Abstract

Dermal wounds and their healing are a collection of complex, multistep processes which are poorly recapitulated by existing 2D in vitro platforms. Biomaterial scaffolds that support the 3D growth of cell cultures can better resemble the native dermal environment, while bioelectronics has been used as a tool to modulate cell proliferation, differentiation, and migration. A porous conductive hydrogel scaffold which mimics the properties of dermis, while promoting the viability and growth of fibroblasts is described. As these scaffolds are also electrically conductive, the application of exogenous electrical stimulation directs the migration of cells across and/or through the material. The mechanical properties of the scaffold, as well as the amplitude and/or duration of the electrical pulses, are independently tunable and further influence the resulting fibroblast networks. This biomaterial platform may enable better recapitulation of wound healing and can be utilized to develop and screen therapeutic interventions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.