Abstract
Developing a simple produces for efficient derivation of motor neurons (MNs) is essential for neural tissue engineering studies. Stem cells with high capacity for neural differentiation and scaffolds with the potential to promote motor neurons differentiation are promising candidates for neural tissue engineering. Recently, human olfactory ecto-mesenchymal stem cells (OE-MSCs), which are isolated easily from the olfactory mucosa, are considered a new hope for neuronal replacement due to their neural crest origin. Herein, we synthesized conducting hydrogels using different concentration of chitosan-g-aniline pentamer, gelatin, and agarose. The chemical structures, swelling and deswelling ratio, ionic conductivity and thermal properties of the hydrogel were characterized. Scaffolds with 10% chitosan-g-aniline pentamer/gelatin (S10) were chosen for further investigation and the potential of OE-MSCs as a new source for programming to motor neuron-like cells investigated on tissue culture plate (TCP) and conductive hydrogels. Cell differentiation was evaluated at the level of mRNA and protein synthesis and indicated that conductive hydrogels significantly increased the markers related to motor neurons including Hb-9, Islet-1 and ChAT compared to TCP. Taken together, the results suggest that OE-MSCs would be successfully differentiated into motor neuron-like cells on conductive hydrogels and would have a promising potential for treating motor neuron-related diseases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.