Abstract

Zn metal with high theoretical capacity (820mAhg−1), environmental-friendly properties and low cost is very competitive to be as an anode for aqueous batteries. However, uncontrollable growth of dendritic zinc in these batteries during plating/stripping process of zinc ions not only leads to a low Coulombic efficiency but also brings safety hazards, which have obstructed the application of secondary Zn-based batteries. Here we use high conductive carbon fiber-graphite felt (GF) as collector and electrodeposit zinc under constant voltage to fabricate a self-supported Zn@GF negative electrode. The graphite felt provides this anode larger electroactive area to transport electrons faster and loads zinc in a more event way, thus preluding the zinc plating in several specific directions. This composite anode offers an efficient solution to get a dendrite-free cycling behavior of zinc-based batteries and might be promising in advanced aqueous batteries for large-scale energy storage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call