Abstract

Flexible and wearable strain sensors for human-computer interaction, health monitoring, and soft robotics have drawn widespread attention to promising applications in the next generation of artificial intelligence devices. However, conventional semiconductor sensors are difficult to meet the requirements of flexibility and stretchability. Here, we reported a kind of novel and simple sensor based on layer-by-layer (LBL) method. Carbon nanotubes (CNTs) layer provides high ductility and stability in the process of tension sensing, while silver layer provides low initial resistance and fast reflecting in the process of tension sensing. LBL method ensures the uniformity of the conductive layer. The sensor has superior sheet resistance of 9.44 Ω/sq., high elongation at break of 104%. For sensing capability, the sensor has wide reflecting range of 60%, high gauge factor (GF) of 1000 up to 60% strain, fast reflecting time of 165 ms. Excellent reliability and stability have also been verified. It is also worth mentioning that the entire process does not require any expensive equipments, complicated processes or harsh experimental conditions. The above features provide an idea for large-scale application of flexible stretchable sensors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.