Abstract

Metal-organic frameworks (MOFs) with intrinsically porous structures and well-dispersed metal sites are promising candidates for electrocatalysis; however, the catalytic efficiencies of most MOFs are significantly limited by their impertinent adsorption/desorption energy of intermediates formed during electrocatalysis and very low electrical conductivity. Herein, Co is introduced into conductive Cu-catecholate (Cu-CAT) nanorod arrays directly grown on a flexible carbon cloth for hydrogen evolution reaction (HER). Electrochemical results show that the Co-incorporated Cu-CAT nanorod arrays only need 52 and 143mV overpotentials to drive a current density of 10mA cm-2 in alkaline and neutral media for HER, respectively, much lower than most of the reported non-noble metal-based electrocatalysts and comparable to the benchmark Pt/C electrocatalyst. Density functional theory calculations show that the introduction of Co can optimize the adsorption energy of hydrogen (ΔGH* ) of Cu sites, almost close to that of Pt (111). Furthermore, the adsorption energy of water ( ) of Co sites in the CuCo-CAT is significantly lower than that of Cu sites upon coupling Cu with Co, effectively accelerating the Volmer step in the HER process. The findings, synergistic effect of bimetals, open a new avenue for the rational design of highly efficient MOF-based electrocatalysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.