Abstract

Covalent organic frameworks (COFs) have attracted widespread attention in the electrochemiluminescence (ECL) field owing to their high load capacity of ECL luminophores and porous structures, but their ECL performance is still limited by the intrinsic poor conductivity (generally <10-8 S m-1). To address this shortcoming, we used 2,3,6,7,10,11-hexaaminotriphenylene (HATP) and 2,3,6,7,10,11-hexahydroxytriphenylene (HHTP) to synthesize a conductive COF (HHTP-HATP-COF, conductivity = 3.11 × 10-4 S m-1). Compared with HATP, HHTP, and low-conductive HHTP-DABZ-COF, HHTP-HATP-COF exhibited superior ECL performance, not only because HHTP-HATP-COF possessed massive ECL luminophores but also because its conductive porous framework accelerated charge transport in the whole framework and improved the utilization ratio of ECL luminophores. More interestingly, the ECL intensity of the HHTP-HATP-COF/S2O82- system was further improved after pre-reduction electrolysis due to the accumulation of HHTP-HATP-COF cation radicals. The experimental results showed that the ECL intensity of the HHTP-HATP-COF/S2O82- system after pre-reduction was about 1.64-, 3.96-, 6.88-, and 8.09-fold higher than those of HHTP-HATP-COF/S2O82-, HHTP-DABZ-COF/S2O82-, HHTP/S2O82-, and HATP/S2O82- systems, respectively. Considering the superior ECL property of the HHTP-HATP-COF/S2O82- system after pre-reduction, it was used as a high-efficient ECL beacon together with an aptamer/protein proximity binding-induced three-dimensional bipedal DNA walker to construct an ultrasensitive biosensor for thrombin detection, which displayed broad linearity (100 aM to 1 nM) with a detection limit of 62.1 aM. Overall, the work offered effective ways to increase ECL performance by the enhancement of conductivity and by the pre-reduction, proposing new ideas to design high-efficiency COF-based ECL materials and endowing conductive COFs with ECL biosensor application for the first time.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call