Abstract

This work presents composite materials with interpenetrating network structure based on thermoplastic polymer and low melting metal alloy. Composites with various alloy content were prepared by PVC powder sintering to obtain polymer matrix with open pores. Then, liquid Wood's metal was intruded into the matrix using a pressure autoclave. Obtained composites have been studied with respect to microstructure, mechanical, thermal, and electrical properties. SEM micrographs revealed good dispersion of metal in the matrix but at low loading levels it is incomplete. Addition of metal improved mechanical properties, especially flexural strength. Electrical resistivity of samples varies from 10−4 to 10−5 Ω m and these values are typical of conductors. The measurements of electromagnetic interference shielding effectiveness (EMI SE) shows that generally PVC/Wood's metal composites have a good ability to shield electromagnetic waves. Composites containing more than 15 vol % Wood's metal exhibited EMI SE above 40 dB in the major part of frequency range. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.