Abstract
AbstractBiostable electronic materials that can maintain their super mechanical and conductive properties, even when exposed to biofluids, are the fundamental basis for designing reliable bioelectronic devices. Herein, cellulose‐derived conductive 2D bio‐nanosheets as electronic base materials are developed and assembled into a conductive hydrogel with ultra‐high biostability, capable of surviving in harsh physiological environments. The bio‐nanosheets are synthesized by guiding the in situ regeneration of cellulose crystal into a 2D planar structure using the polydopamine‐reduced‐graphene oxide as supporting templates. The nanosheet‐assembled hydrogel exhibits stable electrical and mechanical performances after undergoing aqueous immersion and in vivo implantation. Thus, the hydrogel‐based bioelectronic devices are able to conformally integrate with the human body and stably record electrophysiological signals. Owing to its tissue affinity, the hydrogel further serves as an “E‐skin,” which employs electrotherapy to aid in the faster healing of chronic wounds in diabetic mice through transcutaneous electrical stimulation. The nanosheet‐assembled biostable, conductive, flexible, and cell/tissue affinitive hydrogel lays a foundation for designing electronically and mechanically reliable bioelectronic devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.