Abstract

K-ion batteries (KIBs) have been considered as appealing alternatives to Li ion batteries due to the high abundance of K, their high working voltages, and allowing the use of mature LIB technology. Thus far, anode materials that can meet the rigorous requirements of KIBs are still rather rare. Here, we have identified a desirable anode material, a metallic C3NS monolayer with high stability, a high storage capacity of 980 mAh/g, a low diffusion barrier of 0.24 eV, and a low open-circuit voltage of 0.36 V, through first-principles calculations. Metallic C3NSKn (n = 1-3) can ensure a high electron conductivity during the charge/discharge process. Valence electrons of the N atom in a triangular bipyramid configuration favor the formation of a planar edge-sharing hexagonal C4N2 unit and delocalized π bonding with C 2p electrons. The lone pair electrons of the S atom induce strong interactions with K atoms, facilitating storage capacity. These interesting properties make the C3NS monolayer a promising anode for KIBs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call