Abstract
The nano-characterization of thermal oxides grown on 4H-SiC is for the first time presented and analysed to derive its reliability. The dielectric breakdown (BD) kinetics of silicon dioxide (SiO2) thin films thermally grown on 4H-SiC has been determined by comparison between I-V measurements on large-area (up to 1.96×10-5 cm2) metal-oxide-semiconductor (MOS) structures and conductive atomic force microscopy (C-AFM) with a resolution of a few nanometers. C-AFM clearly images the weak breakdown single spots under constant voltage stresses. The stress time on the single C-AFM tip dot has been varied from 1×10-3 to 1×10-1 s. The density of BD spots, upon increasing the stress time, exhibits an exponential trend. The Weibull slope and the characteristic time of the dielectric BD events were so determined by direct measurements at nanometer scale demonstrating that the percolation model is valid for thin thermal oxide layers on 4H-SiC (5-7nm), but it fails for larger thicknesses (10 nm).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.