Abstract

Nanocarbon-based conductive membranes, especially carbon nanotube (CNT)-based membranes, have tremendous potential for wastewater treatment and water purification because of their excellent water permeability and selectivity, as well as their electrochemically enhanced performance (e.g., improved antifouling ability). However, it remains challenging to prepare CNT membranes with high structural stability and high electrical conductivity. In this study, a highly electroconductive and structurally stable polyphenylene/CNT (PP/CNT) composite membrane was prepared by electropolymerizing biphenyl on a CNT hollow fiber membrane. The PP/CNT membrane showed 3.4 and 5.0 times higher electrical conductivity than pure CNT and poly(vinyl alcohol)/CNT (PVA/CNT) membranes, respectively. The structural stability of the membrane was superior to that of the pure CNT membrane and comparable to that of the PVA/CNT membrane. The membrane fouling was significantly alleviated under an electrical assistance of − V, with a flux loss of only 11.7% after 5 h filtration of humic acid, which is significantly lower than those of PP/CNT membranes without electro-assistance (56.8%) and commercial polyvinylidene fluoride (PVDF) membranes (64.1%). Additionally, the rejection of negatively charged pollutants (humic acid and sodium alginate) was improved by the enhanced electrostatic repulsion. After four consecutive filtration-cleaning cycle tests, the flux recovery rate after backwashing reached 97.2%, which was much higher than those of electricity-free PP/CNT membranes (67.0%) and commercial PVDF membranes (61.1%). This study offers insights into the preparation of stable conductive membranes for membrane fouling control in potential water treatment applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.