Abstract
ABSTRACTConventional conductive materials face challenges when utilizing them for flexible and wearable electronics and soft robotics. Carbon nanotube/polydimethylsiloxane (CNT/PDMS) composites are a promising alternative to the conventional hard conductors because they are light and can realize large deformation. To date, well dispersion of CNTs into PDMS to increase conductivity while maintaining flexibility remains challenging. We aimed at developing highly electrically conductive and flexible multi‐walled carbon nanotube/PDMS (MWCNT/PDMS) composites. To this end, we proposed a method to enhance the dispersion of MWCNTs into PDMS using naphthalene and toluene. Our results showed that the addition of naphthalene and toluene into the composites improved dispersion of the MWCNTs and increased the direct current (DC) electrical conductivity. We also found that the morphology of primary aggregates of the MWCNTs influenced the DC electrical conductivity of the composites. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019, 136, 48167.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.