Abstract
Shingled solar cells based on electrically conductive adhesive (ECA) interconnection have emerged as a commercially viable option for photovoltaic (PV) modules with attractive attributes including no soldering process (lead-free), tight packing with no gap between cells, and resulting efficiency gains. Reliability of such modules is, however, less certain due to the lack of long-term outdoor performance data. Here we report numerical simulation of thermo-mechanical stress in shingled solar cells using finite element modelling, and identify stress concentration in silicon in the interconnect region not anticipated from simpler analytical models. We also present design and fabrication of samples using ECA interconnection with geometry and characteristics that closely match production modules for realistic fatigue testing under cyclic loading. The setup is combined with real-time electrical measurements that permit monitoring of fatigue-induced changes in the electrical resistance of ECA joint. Detailed measurements are presented using samples with different types ECA and varying patterns of the glue-line aimed at evaluating reduced material usage for cost-reduction. This study demonstrates that the sample structure and experimental setup presented here can be effectively used to evaluate electrical and mechanical degradation of shingled PV modules to guide their design process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.