Abstract

The conduction properties of the crista terminalis (CT) and its influence on the right atrial activation sequence were analyzed in 14 patients with typical atrial flutter (AF). Atrial mapping was performed with 35 points of the right atrium during typical AF and during atrial pacing performed after linear ablation of inferior vena cava-tricuspid annulus (IVC-TA) isthmus. Atrial pacing was delivered from the septal isthmus at cycle lengths of 600 ms and the tachycardia cycle length (TCL). The right atrial activation sequence and the conduction interval (CI) from the septal to lateral portion of the IVC-TA isthmus were analyzed. During AF, the conduction block line (CBL) (detected by the appearance of double potentials along the CT and craniocaudal activation on the side anterior to CT) was observed along the CT in all patients. The TCL and CI during AF were 254 +/- 19 and 207 +/- 14 ms, respectively. During pacing at a cycle length of 600 ms, the CBL was observed along the CT in four patients, however, a short-circuiting activation across the CT was observed in the remaining ten patients. The CI during pacing at 600 ms was 134 +/- 38 ms, shorter than that during AF (P < .0001). During pacing at the TCL, the CBL was observed along the CT in all patients. The presence of the CBL along the CT prevented a short-circuiting activation across the CT and resulted in the same right atrial activation as observed during AF. With the formation of the CBL, the CI significantly increased to 206 +/- 17 ms and was not different from that during AF. These data suggest that the conduction block along the CT is functional. It was presumed that presence of conduction block at the CT has some relevance to the initiation of typical AF though it was not confirmed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.