Abstract
Results of studies on single and multiple SnO2 nanowire gas sensors with impedance spectroscopy are reported. Equivalent circuit modeling is used to draw fundamental conclusions about the dominant conduction mechanism in single-nanowire sensors, where the diameter of the nanowire is found to play a key role. This is then extended to multiple-nanowire sensors. For single-nanowire sensors, I–V measurements are also used to demonstrate that the contribution from the electrode-nanowire contact to the overall resistance changes with atmosphere and temperature. We find that for the randomly-orientated multiple-nanowire sensors, the main contribution to the resistance comes from the nanowire–nanowire junction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.