Abstract

In 1991, Coggeshall published a series of 22 closed-form solutions of the Euler compressible flow equations with a heat conduction term included. A remarkable feature of some of these solutions is invariance with respect to conduction; this phenomenon follows from subtle ancillary constraints wherein a heat flux term is assumed to be either identically zero or nontrivially divergence-free. However, the solutions featuring the nontrivial divergence-free heat flux constraint can be shown to be incomplete, using a well-known result most commonly encountered in elementary electrostatic theory. With this result, the application of the divergence operator to the heat flux distributions exhibited by many of the solutions yields a delta function source term instead of identically zero. In theory, the relevant solutions will be conduction invariant only if the appropriate source term is included. This result has important implications for the use of the Coggeshall similarity solutions as code verification test problems for simulation codes featuring coupled compressible fluid flow and heat conduction processes. Computational reproduction of the conduction invariance property represents a conceptually simple check for verifying the robustness of a multiphysics algorithm. In this work, it is demonstrated in the context of various computational instantiations of Coggeshall solution #8 (Cog8) that to maintain any semblance of conduction invariance, a heat source term must be included even with a simple nonlinear heat conduction process. The efficacy of the heat source term is shown to depend not only on values of the various free parameters included in the Coggeshall mathematical model but also the representation of heat sources in multiphysics simulation codes of interest.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.