Abstract

The effect of a thermal environment on electron (or hole) transfer through molecular bridges and on the electron conduction properties of such bridges is studied. Our steady state formalism based on an extension of the Redfield theory [J. Phys. Chem. B 104 (2000) 3817; Chem. Phys. 268 (2001) 315] is extended in two ways: First, a better description of the weak-coupling limit, which accounts for the asymmetry of the energy dependence of the quasi-elastic component of the transmission is employed. Secondly, for strong coupling to the thermal bath the small polaron transformation is employed prior to the Redfield expansion. It is shown that the thermal coupling is mainly characterized by two physical parameters: the reorganization energy that measures the coupling strength and the correlation time (or its inverse – the spectral width) of the thermal bath. Implications for the observed dependence of the bridge-length dependence of the transmissions are discussed. It is argued that in the intermediate regime between tunneling behavior and site-to-site thermally induced hopping, the transport properties may depend on the interplay between the local relaxation rate and the transmission dynamics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.