Abstract

Flow and heat transfer in a suspension down an inclined plane is studied; non-linear constitutive relations for the stress tensor and the heat flux vector are used. The (material) coefficients appearing in these constitutive relations are assumed to be functions of the volume fraction. Different thermal boundary conditions including radiation boundary condition at the free surface are used and a parametric study is performed to study the impact of the dimensionless numbers on the flow and heat transfer. The dimensionless forms of the governing equations are solved numerically, and velocity, volume fraction and temperature fields are obtained.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call