Abstract

A collection of organic cations has been used to probe the gross structural features of the ionic diffusion pathway in a K+-selective channel from sarcoplasmic reticulum (SR). Channels were incorporated into planar phospholipid bilayer membranes, and single-channel currents were measured in the presence of ammonium-derived cations in the aqueous phases. Small monovalent organic cations are able to permeate the channel: the channel conductance drops sharply for cations having molecular cross sections larger than 18-20 A2. Impermeant or poorly permeant cations such as tetraethylammonium, choline, and glucosamine, among others, block K+ conduction through the channel. This block is voltage dependent and can be described by a one-site, one-ion blocking scheme. 19 monovalent organic cations blocks primarily from the trans side of the membrane (the side defined as zero voltage), and much more weakly, if at all, from the cis side (to which SR vesicles are added). These blockers all appear to interact with a site located at 63% (average value) of the electric potential drop measured from the trans side. Furthermore, block by 1,3-bis[tris(hydroxymethyl)-methylamino] propane (BTP) shows that the presence of a blocking ion increases the duration of the apparent open state, as expected for a scheme in which the blocking site can be reached only when the channel is open. The results lead to a picture of the channel containing a wide (at least 50 A2) nonselective trans entry in series with a narrow (20 A2) constriction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.