Abstract
Transition metal dichalcogenides (TMDs) are potential candidates for electrocatalytic applications due to their unique structures and intrinsic properties. In this work, the systematic synthesis of conducting polymer-templated and nonnoble metal-doped MoSe2 hybrids was carried out using a facile hydrothermal method. Integrating conductive polyaniline, as a conductive polymer, with MoSe2 nanosheets (MoSe2@PANI) as well as transition metal (Co, Ni or Fe) doping provided more active sites for both H+ and OH– adsorption, resulting in enhanced hydrogen and oxygen evolution performance. The Co-doped MoSe2@PANI hybrid catalyst exhibited enhanced bifunctional electrocatalytic activity for the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) in alkaline electrolytes, where Co-doping as well as polyaniline addition played key roles in boosting the HER/OER activity. As a result, the Co-doped MoSe2@PANI catalyst exhibited overpotentials of 196 mV and 385 mV at a current density of 10 mA cm−2 for the HER and OER, respectively. When Co-doped MoSe2@PANI was applied as a bifunctional electrocatalyst for overall water splitting, a potential of 1.82 V was needed to achieve a current density of 10 mA cm−2. Moreover, the Co-doped MoSe2@PANI catalyst displayed good stability for long-term cycling. This work provides new insight into the design of metal-doped TMD/conducting polymer-based materials for electrocatalytic applications, including water electrolysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.