Abstract

In the field of biological analysis, the need for multiparametric analysis has prompted the development of supports bearing a series of biomolecules linked to a support in a precise location (addressed). To reach a high information density, miniaturization of this kind of support has to be carried out. We describe in this paper an approach involving the use of electro-conducting polymers such as polypyrrole. This technology is based on an electro-directed copolymerization of pyrrole and oligodeoxynucleotides (ODN) linked to a pyrrole residue. The process allows the grafting of the selected ODN at the surface of the successively addressed microelectrodes. In this way, the syntheses are carried out on 50 μm electrodes on passive chips or on active (multiplexed) chips bearing 48 or 128 gold microelectrodes, respectively. The detection of biological targets recognized by the biochip is carried out by using fluorescent tracers. This technology, involving prepurified materials precisely addressed, allows better reproducibility of the biochip preparation and, then, an easy interpretation of the fluorescence results. The versatility of this technology is illustrated by ODN or peptide copolymerizations leading to DNA chips or peptide chips, respectively. This would open the field for other biological interaction studies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.