Abstract

The fast-growing modern world endorses the demand for alternative non-conventional energy production and storage devices. In this respect, supercapacitors are the devices of research interest. Electrode materials of a supercapacitor device which is an essential part have been studied long by the scientific community to fabricate one with maximum performance. Different materials such as carbonaceous, metal oxides, conducting polymers and their combination have been utilized to fabricate the device. Many conducting polymers are studied for supercapacitor devices such as polypyrrole, polythiophene, polyaniline, and PEDOT. Conducting polymers possess tuneable morphological features, fast doping, and de-doping ability and charge-discharge kinetics, and each of them makes them suitable to be utilized as an electrode material for supercapacitor devices. However, the inherent drawback of low specific capacitance limits their sole use as the electrode material. A combination of conducting polymers in the form of composite with metal oxide and carbonis found to be beneficial to attend the desired properties of an electrode material for supercapacitor devices. This chapter provides only a brief overview of the types of conducting polymer-based electrodes of a supercapacitor device.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call