Abstract

The application of four different conducting polymers (polypyrrole, poly- N-methylpyrrole, poly-5-carboxyindole and polyaniline) as sensors for organic vapours has been investigated. The sensors are formed by the electrochemical polymerization of the appropriate monomers across a 12 μm gap between two gold microband electrodes. Upon exposure to vapours the polymers show conductivity changes that are rapid and in general reversible at room temperature. Of the four polymers investigated, under the deposition conditions employed and for the vapours used (methanol, ethanol, acetone, ether and toluene), poly-5-caboxyindole is found to give the most stable, reproducible behaviour and to be the most promising material for sensor applications. The use of these materials in intelligent gas sensors is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.