Abstract

In the past few decades, increasing demands for electrically conductive adhesives (ECAs) have led to growing interest in the design and development of innovative strategies to obtain materials with synergetic or complementary properties for various industrial as well as biomedical applications. In this context, the replacement of traditional tin/lead (Sn/Pb) solders due to their corrosion, low strength of joints, solder joint fatigue, stress-induced cracking within the interconnect, as well as environmental issues are attracted a great deal of interests, especially in industrial committees. The significant progress in polymer science as well as the advent of nanotechnology, have been led to design and development of alternative materials with higher performance over conventional adhesives. On the other hand, intrinsically conductive polymers (ICPs) offer promising materials for the replacement or reducing the content of metallic fillers (e.g., silver, gold, nickel, or copper) in ECAs due to some disadvantages of metallic fillers. For the first time, an overview of the recent progress in the design, fabrication, and applications of the ECAs based on ICPs is presented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call