Abstract

A "grafting to" methodology for the attachment of a silane based polymer (SG) onto functionalized graphitic platelets is demonstrated. The siloxy end groups of the modifier were further cross-linked without addition of any external curative. These sterically stabilized nanoplatelets with a high grafting density ensured complete screening of the attractive interparticle interactions. As a result, a better dispersion of platelets was observed compared to the physically mixed platelets in the polymer matrix (SUG). The larger size of the polymer tethered graphitic particles and the greater extent of heat liberated due to grafting resulted in a higher enthalpic contribution in the case of SG compared to SUG. This makes the formation of SG thermodynamically more favorable compared to SUG. Presence of a hierarchical spatial arrangement with a good dispersion of graphitic platelets was observed within the siloxane matrix in the case of SG compared to SUG. The nanoparticle tethered composite generated exhibited an "instant" conducting adhesive behavior. The adhesive properties of the SG were found to be increased due to grafting of graphitic platelets when compared with the neat polymer. Further, SG exhibited a conductive character whereas the neat polymer and SUG demonstrated an insulating character.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.