Abstract

Inhomogeneities and junctions in wires are natural sources of scattering, and hence resistance. A conducting fixed point usually requires an adiabatically smooth system. One notable exception is "healing", which has been predicted in systems with special symmetries, where the system is driven to the homogeneous fixed point. Here we present theoretical results for a different type of conducting fixed point which occurs in inhomogeneous wires with an abrupt jump in hopping and interaction strength. We show that it is always possible to tune the system to an unstable conducting fixed point which does not correspond to translational invariance. We analyze the temperature scaling of correlation functions at and near this fixed point and show that two distinct boundary exponents appear, which correspond to different effective Luttinger liquid parameters. Even though the system consists of two separate interacting parts, the fixed point is described by a single conformally invariant boundary theory. We present details of the general effective bosonic field theory including the mode expansion and the finite size spectrum. The results are confirmed by numerical quantum Monte Carlo simulations on spinless fermions. We predict characteristic experimental signatures of the local density of states near junctions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call