Abstract

The redox activity of a ferrocenyl monolayer grafted on an n-type Si111 substrate was investigated by scanning electrochemical microscopy (SECM) in conditions where the substrate plays the role of an insulator. This approach permits the differentiation between the different possible electron-transfer and mass-transport pathways occurring at the interface. As an exciting result, the thin ferrocenyl monolayer behaves like a purely conducting material, highlighting very fast electron communication between immobilized ferrocenyl headgroups in a 2D-like charge-transport mechanism.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call