Abstract

Ferroelectric ceramics are susceptible to fracture under high electric fields, which are commonly generated in the vicinity of electrodes or conducting layers. In the present work, we extend a phase-field model of fracture in ferroelectric single crystals to the simulation of the propagation of conducting cracks under purely electrical loading. This is done by introducing the electrical enthalpy of a diffuse conducting layer into the phase-field formulation. Simulation results show oblique crack propagation and crack branching from a conducting notch, forming a tree-like crack pattern in a ferroelectric sample under positive and negative electric fields. Microstructure evolution indicates the formation of tail-to-tail and head-to-head 90° domains, which results in charge accumulation around the crack. The charge accumulation, in turn, induces a high electric field and hence a high electrostatic energy, further driving the conducting crack. Salient features of the results are compared with experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.