Abstract

Myocytes from neonatal rat hearts were used to assess the conductive properties of gap junction channels by means of the dual voltage-clamp method. The experiments were carried out on three types (groups) of preparations: (1) induced cell pairs, (2) preformed cell pairs with few gap junction channels (1 to 3 channels), and (3) preformed cell pairs with many channels (100 to 200 channels) after treatment with uncoupling agents such as SKF-525A (75 micromol/L), heptanol (3 mmol/L), and arachidonic acid (100 micromol/L). In group 1, the first opening of a newly formed channel was slow (20 to 65 ms) and occurred 7 to 25 minutes after physical cell contact. The rate of channel insertion was 1.3 channels/min. Associated with a junctional voltage gradient (Vj), the channels revealed multiple conductances, a main open state [gamma(j)(main state)], several substates [gamma(j)(substates)], and a residual state [gamma(j)(residual state)]. On rare occasions, the channels closed completely. The same phenomena were observed in groups 2 and 3. The existence of gamma(j)(residual state) provides an explanation for the incomplete inactivation of the junctional current (Ij) at large values of Vj in cell pairs with many gap junction channels. The values of gamma(j)(main state) and gamma(j)(residual state) gained from groups 1, 2, and 3 turned out to be comparable and hence were pooled. The fit of the data to a Gaussian distribution revealed a narrow single peak for both conductances. The values of gamma(j) were dependent on the composition of the pipette solution. Solutions were as follows: (1) KCl solution, gamma(j)(main state)=96 pS and gamma(j)(residual state)=23 pS; (2) Cs+ aspartate solution, gamma(j)(main state)=61 pS and gamma(j)(residual state)=12 pS; and (3) tetraethylammonium+ aspartate solution, gamma(j)(main state)=19 pS and gamma(j)(residual state)=3 pS. The respective gamma(j)(main state)-to-gamma(j)(residual state) ratios were 4.2, 5.1, and 6.3. This indicates that the residual state restricts ion permeation more efficiently than does the main state. Transitions of Ij between open states (main open state, substates, and residual state) were fast (<2 ms), and transitions involving the closed state and an open state were slow (15 to 65 ms). This implies the existence of two gating mechanisms. The residual state may be regarded as the ground state of electrical gating controlled by Vj; the closed state, as the ground state of chemical gating.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.