Abstract

ABSTRACTTopological (GeTe)/(Sb2Te3) superlattices (SL) are of practical interest for memory applications because of different mechanism of electric conductance switching in the crystalline phase. In the work, electrical switching behavior of individual SL grains was examined employing a multimode scanning probe microscope (MSPM) in a lithography mode at room temperature. Using programmed bias voltage with different amplitude and pulse duration, we observed the position-dependent variations of the switching voltage and the current injection delay for [(GeTe)2 (Sb2Te3)]4 SLs on Si(100). The results shed a light on the role of electric field and hot-electron injection on the SL conductance switching.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.