Abstract

Using first-principles calculations, we investigate conductance of molecular junctions consisted of single and double polyacene (PA) molecules bridging different carbon nanowire electrodes, including armchair carbon nanotubes (CNT) and zigzag graphene nanoribbons (GNR). Doubling the PA molecule enhances the junction conductance, except in the junction where a molecule contacts armchair CNT with nonvertical edges. Elongating the PA molecules change junction conductance. The different conductance scaling behaviors among various junctions are governed by the interface between the molecule and the electrode, the molecular length, and the edge states of zigzag GNR.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call