Abstract
We present electrical measurements from In0.75Ga0.25As 1D channel devices with Rashba-type, spin–orbit coupling present in the 2D contact regions. Suppressed backscattering as a result of the time-reversal asymmetry at the 1D channel entrance results in enhanced ballistic transport characteristics with clear quantised conductance plateaus up to 6 × (2e2/h). Applying DC voltages between the source and drain ohmic contacts and an in-plane magnetic field confirms a ballistic transport picture. For asymmetric patterned gate biasing, a lateral spin–orbit coupling effect is weak. However, the Rashba-type spin–orbit coupling leads to a g-factor in the 1D channel that is reduced in magnitude from the 2D value of 9 to ~6.5 in the lowest subband when the effective Rashba field and the applied magnetic field are perpendicular.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.