Abstract

A nano-system in which electrons interact and in contact with Fermi leads gives rise to an effective one-body scattering which depends on the presence of other scatterers in the attached leads. This non local effect is a pure many-body effect that one neglects when one takes non interacting models for describing quantum transport. This enhances the non-local character of the quantum conductance by exchange interactions of a type similar to the RKKY-interaction between local magnetic moments. A theoretical study of this effect is given assuming the Hartree-Fock approximation for spinless fermions in an infinite chain embedding two scatterers separated by a segment of length L\_c. The fermions interact only inside the two scatterers. The dependence of one scatterer onto the other exhibits oscillations which decay as 1/L\_c and which are suppressed when L\_c exceeds the thermal length L\_T. The Hartree-Fock results are compared with exact numerical results obtained with the embedding method and the DMRG algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.