Abstract

Gap junction channels are intercellular channels that mediate the gated transfer of molecules between adjacent cells. To identify the domain determining channel conductance, the first transmembrane segment (M1) was reciprocally exchanged between Cx46 and Cx32E 143. The resulting chimeras exhibited conductances similar to that of the respective M1 donor. Furthermore, a chimera with the carboxy-terminal half of M1 in Cx46 replaced by that of Cx32 exhibited a conductance similar to that of Cx32E 143, whereas the chimera with only the amino-terminal half of M1 replaced retained the unitary conductance of wild-type Cx46. Extending the M1 domain swapping to other connexins by replacing the carboxy-terminal half of M1 in Cx46 with that of Cx37 yielded a chimera channel with increased unitary conductance close to that of Cx37. Furthermore, a point mutant of Cx46, with leucine substituted by glycine in position 35, displayed a conductance much larger than that of the wild type. Thus, the M1 segment, especially the second half, contains important determinants of conductance of the connexin channel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.