Abstract

Oligoanilines are interesting candidates for organic electronics, as their conductivity can be varied by several orders of magnitude upon protonic doping. Here we demonstrate that tetraaniline self-assembled monolayers exhibit an unprecedented conductance on/off ratio of ∼710 (at +1 V) upon doping of the layers from the emeraldine base to the emeraldine salt form. Furthermore, a pronounced asymmetry in the current-voltage characteristics indicates dynamic doping of the tetraaniline layer by protons generated through field-enhanced dissociation of water molecules, a phenomenon known as the second Wien effect. These results point toward oligoanilines as promising substitutes for polyaniline layers in next-generation thin film devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.