Abstract

ABSTRACTElectrical conductance of single stranded DNA (5′-TTT TTT TTT T/3 Thio MC3-D/-3′) monolayer patterns on Au surface is compared with those of various organic molecular patterns via the conductance microscope (CM) technique that allows one to take nanoscale conductance images utilizing a conducting AFM tip in contact mode AFM. In the experiment, reference molecules and ssDNA are patterned on the same substrate via direct deposition methods such as dip-pen nanolithography and microcontact printing. Then, conductance microscope image is recorded revealing the relative conductivity of ssDNA patterns relative to various reference molecules. 16-mercaptohexadecanoic acid and 2-mercaptobenzimidazole patterns are found conducting better than the ssDNA patterns. This result indicates that the ssDNA with 10T bases is a relatively poor electrical conductor. The capabilities of CM technique are also tested on various nanostructures including the single wall carbon nanotube junction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.