Abstract

Impurities and defects are ubiquitous in topological insulators (TIs) and thus understanding the effects of disorder on electronic transport is important. We calculate the distribution of the random conductance fluctuations $P(G)$ of disordered 2D TI wires modeled by the Bernevig-Hughes-Zhang (BHZ) Hamiltonian with realistic parameters. As we show, the disorder drives the TIs into different regimes: metal (M), quantum spin-Hall insulator (QSHI), and ordinary insulator (OI). By varying the disorder strength and Fermi energy, we calculate analytically and numerically $P(G)$ across the entire phase diagram. The conductance fluctuations follow the statistics of the unitary universality class $\beta=2$. At strong disorder and high energy, however, the size of the fluctutations $\delta G$ reaches the universal value of the orthogonal symmetry class ($\beta=1$). At the QSHI-M and QSHI-OI crossovers, the interplay between edge and bulk states plays a key role in the statistical properties of the conductance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.