Abstract
The intrinsic electrophysiological properties of single neurons can be described by a broad spectrum of models, from realistic Hodgkin-Huxley-type models with numerous detailed mechanisms to the phenomenological models. The adaptive exponential integrate-and-fire (AdEx) model has emerged as a convenient middle-ground model. With a low computational cost but keeping biophysical interpretation of the parameters, it has been extensively used for simulations of large neural networks. However, because of its current-based adaptation, it can generate unrealistic behaviors. We show the limitations of the AdEx model, and to avoid them, we introduce the conductance-based adaptive exponential integrate-and-fire model (CAdEx). We give an analysis of the dynamics of the CAdEx model and show the variety of firing patterns it can produce. We propose the CAdEx model as a richer alternative to perform network simulations with simplified models reproducing neuronal intrinsic properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.