Abstract

In this paper the stress field in the proximity of a circular (cylindrical) inclusion is considered. The conditions for in-plane plastic flow in the matrix are examined from a classical elasticity solution obtained by Goodier. Elementary cases are considered such as remote loading ranging from pure tensile and pure shear to equibiaxial tension. For proportional loading, it is argued that the upper bound to the shakedown limit is always twice the elastic limit; therefore, within the limits of our assumptions, if the elastic stress concentration for the equivalent stress is greater than two, there is a possibility of cyclic plasticity before bulk yielding, which means that possibly an arbitrarily large plastic strain can cumulate with increasingly high risk of exhaustion of ductility and void nucleation or detachment of the interface. Consequently, conditions under which it is possible to reach twice the elastic limit before full-scale yielding are shown in the Dundurs plane representing all possible combinations of elastic parameters. Following these lines, it is shown that there is no possibility of cyclic plasticity under remote shear; there is a limited area of the Dundurs plane for tension, including the hole case; finally, in the equibiaxial limiting case, cyclic plasticity is always possible for any combination of elastic properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.